
Real-Coded Genetic Algorithms and
Interval-Schemata

Jangeun Kim 20236471

Contents

• 1. Introduction

• 2. Interval-schemata and crossover

• 3. Failure modes of an IPGA

• 4. Empirical comparisons

• 5. Crossover versus mutation

• 6. Conclusion

2/33

1.Introduction

1.Introduction

✓ In this paper, we take on the task of giving a theoretical defense of real-
coded GAs.

• Primary motivation for real-coded GA

✓ First, real-coding of the genes eliminates the worry that there is adequate
precision so that good values are representable in the search spaceV

✓ Second, the range of a parameter does not have to be a power of two.

✓ Third, GAs operating on real-coded genes have the ability to exploit the
gradualness of functions of continuous variables
☞ concentrate on the third feature

☞ does not distinguish real-coded GAs from binary coded GAs.

☞ assumed that GAs that we will be comparing will use representations that have the same range and
precision for any given function.

• Main objective

4/33

2. Interval-schemata and crossover

2. Interval-schemata and crossover

• Crossover operator

✓ We use a crossover operator that is a generalization of Radcliffe's which
we call blend crossover (BLX-α).

☞ Radcliffe's flat crossover chooses parameters for an offspring by uniformly picking parameter
values between (inclusively) the two parents parameter values

➢ For example,

- BLX-0.5 picks parameter values from points that lie on an interval that extends 0.5I on
either side of the interval I between the parents.(= extrema used by Wright)

- BLX-0.0 is equivalent to Radcliffe's flat crossover.

6/33

2. Interval-schemata and crossover

• Interval-schemata

✓ What all these crossover operators have in common is that they exploit the
parameter intervals determined by the parents rather than the patterns of
symbols they share.

➢ suggest that the relevant concept is an Interval-schema.

☞ Holland's language of schemata is too restrictive for analyzing real-coded GA

➢ The number of interval-schemata that can be defined over
this range of integers is:

☞ Let 𝑛 = 2𝐿 be the size of the range for integers that could be coded as L-bit strings

☞ example
- 36 interval-schemata can be defined for a parameter whose range is [0,7].
- There are two interval-schemata of length 7, [0,6] and [1,7].
- short interval-schemata, [0,0], [1,1], etc.

- Parameter value is a member of at least n and up to a maximum of 𝑛 + 1 2/4 interval-schemata

- a value of k for the parameter that ranges from [0,n-1] is a member of (k+l)(n - k) interval-schemata

෍

𝒊=𝟏

𝒏

𝒊 =
𝒏(𝒏 − 𝟏)

𝟐

- two points at positions k1 and k2, k1 < k2 have (k1+ l)(n - k2) interval-schemata

7/33

2. Interval-schemata and crossover

• Interval-schemata

✓ The way an interval-processing GA (IPGA) processes interval-schemata is
analogous to the way a symbol-processing GA (SPGA) processes symbol-
schemata.

➢ it is important to note that long interval-schemata correspond roughly to
low order symbol-schemata

➢ Both are characterized by not being very specific

➢ As search progresses a SPGA will progressively focus its search on higher order
schemata whereas an IPGA will progressively focus on shorter interval schemata

☞ In the former case, the SPGA has narrowed the search down to certain partitions,

☞ whereas in the latter case the IPGA has narrowed the search to certain contiguous regions.

❖ The interval-schemata that are being searched are those bounded by the parameter extrema

contained in the population.

❖ As these values narrow, the search becomes more and more focused, taking its samples from

a smaller and smaller region of the parameter range.

8/33

3. Failure modes of an IPGA

3. Failure modes of an IPGA

• Failure to propagate good schemata

☞ there is only a single value in the interval that is good, and all other values are equally bad.

➢ The successful algorithm requires a crossover operator that has a fairly
high likelihood of passing on to the offspring those genes that are by
chance the optimum allele.

☞ 2X has this property, since it has a relatively high probability in a many-gene

problem of passing on any single gene intact.

☞ UX will also be more successful than BLX-0.0 at propagating optimal values

when surrounded by a plateau.

✓ There are a number of situations where an IPGA will have difficulty
propagating good schemata, but it is instructive to consider an
extreme case—a needle on a plateau.

10/33

3. Failure modes of an IPGA

• Failure to propagate good schemata

✓ If we look at the extreme case where an optimum value is crossed over
with its complement, the cases appear the same.

➢ Example.
Suppose the optimum lies at one of the extrema of a parameter that ranges
over 2𝐿 values

☞ It is coded as the integer 0 for an IPGA and a string of L zeros for a SPGA with binary coding.

☞ Then if the parameter is crossed over with its complement to produce a single child,

there is only a 1/ 2𝐿 probability of the allele surviving in the child.

* i.e., 2𝐿-1 in the case of the IPGA and L ones in the case of a SPGA

❖ this is not the typical situation!

11/33

3. Failure modes of an IPGA

• Failure to propagate good schemata

➢ Example.
Suppose the optimum lies at one of the extrema of a parameter that ranges
over 2𝐿 values

❖ The important thing to note is that if there is no structure around the

optimum, then the mate is likely to be a random individual in this range.

▪ In the case of BLX-0.0 the expected value of a randomly generated gene will differ
from the optimum by one half the range, and in the case of UX one half the bits.

☞ In other words,

the probability of propagating the optimum when mated with a randomly chosen

individual is 2 * 1/ 2𝐿 = 1/ 𝟐𝐋−𝟏 for BLX-0.0, whereas it is 1/ 𝟐𝐋/𝟐 for UX.

✓ the probability of propagating the optimum doubles for BLX to 1/ 2𝐿−2

* Condition : the optimum lies in the center rather than an extrema

* but for intervals coded with more than four bits, UX will still have a higher likelihood of

propagating the optimum than BLX-0.0.

12/33

3. Failure modes of an IPGA

• Premature convergence

✓ The strength of BLX-0.0 is that it produces its samples in the contiguous
regions defined by the points contained in the population.

☞ This means that BLX-0.0 is less likely to prematurely converge to the values that correspond to

the lower order bits. (We will make an important qualification to this below.)

☞ whereas 2X is good at preserving contiguous chunks of the chromosome intact,

☞ Unlike 2X, UX has no positional bias.

☞ It will be better at searching the lower order bits than 2X, but not as good as BLX-0.0.

✓ BLX-0.0 is good at testing small variations of contiguous chunks.

☞ 2X, on the other hand, is much more likely to prematurely converge on the lower order bits.

✓ BLX-0.0 has no positional bias.

❖ BLX-0.0 pays a price for this ability to exploit local information.

13/33

3. Failure modes of an IPGA

• Premature convergence

▪ The number of interval schemata being searched by a GA using BLX is limited by the
maximum and minimum values of the parameters represented in the population.

☞ Just as 2X or UX cannot introduce new alleles, BLX-0.0 cannot extend the interval ranges.

❖ BLX-0.0 pays a price for this ability to exploit local information.

▪ If the range of the parameters (or cardinality of the alphabet) is large relative to the
population size, then the algorithm is quite likely to start its search without some values
represented.

☞ This is a fatal weakness for an IPGA

e.g. if the optimal point is at one of the extrema of the interval, for a crossover operator

bounded by the two points determined by the parents (as in the case of BLX-0.0) will

never be able to find the optimum unless it is enveloped by the original population.

☞ generally,

unless the extrema in the initial population envelop the optimal point, it cannot be reached via BLX-0.0

14/33

3. Failure modes of an IPGA

• Premature convergence

❖ BLX-0.0 pays a price for this ability to exploit local information.

▪ If the range of the parameters (or cardinality of the alphabet) is large relative to the
population size, then the algorithm is quite likely to start its search without some values
represented.

☞ This is a fatal weakness for an IPGA

☞ generally,

unless the extrema in the initial population envelop the optimal point, it cannot be reached via BLX-0.0

How to overcome this problem?

➢ by letting the range from which an offspring is chosen extend on either side of the interval
defined by the parents’ parameter values (i.e., let α > 0).

☞ the absence of selection pressure all values for a < 0.5 will exhibit a tendency to population

convergence toward allele values in the center of their ranges.

☞ α = 0.5 does the probability that an offspring will lie outside its parents become equal to

the probability that it will lie between its parents.

15/33

4. Empirical comparisons

4. Empirical comparisons

• Failure mode tests

➢ four test fuction : f-needles, f-incline, f-V and f-cliff

✓ Test function

☞ f-incline, is a simple incline problem with the minimum (the optimum) at one extreme

☞ f-V, is a double incline or V function with the minimum at the center

☞ f-cliff, is similar to f-V except that the left incline has been raised so that there is a cliff on one

side of the minimum

☞ f-needles consists of five needles on five plateaus:

* f-needles, was devised to test the hypothesis that BLX- α would have difficulty in certain circumstances propagating good schemata,

* above three functions were devised to test the hypothesis concerning premature convergence

* For these three functions, x ranges from 0 to 230 - 1. 17/33

4. Empirical comparisons

• Failure mode tests

➢ tested each function using both a traditional GA and CHC

(1) Gross generational elitist selection: the parent and child populations are merged and the best M individuals

are chosen, where M is the population size.

(2) heterogeneous recombination (incest prevention): only individuals who are sufficiently different (in terms

of Hamming distance) are mated.

(3) Cataclysmic mutation (restarts): only crossover is used to produce new offspring, but when the population

converges, massive mutations are applied, preserving the best individual intact, and the search is resumed

using only crossover.

➢ tested four crossover operators: BLX-0.0, BLX-0.5, 2X, and HUX.

✓ Test condition

☞ HUX is like UX, except exactly half the differing bits are swapped at random

☞ CHC differs from the traditional GA in several respects:

➢ Traditional GA used proportional selection, the elitist strategy, a population size
of 50, no mutation, and 2X with a crossover rate of 1.0.

➢ Each of the four operators produces two children per mating.

➢ a population size of 50 and halted the search when either the minimum was
found or the population converged (with no restarts).

18/33

4. Empirical comparisons

• Failure mode tests

➢ Prediction that needles-on-plateaus would be relatively harder for BLX- α than HUX

or 2X is confirmed by BLX-0.0's and BLX-0.5's worse performance on f-needles

➢ as predicted, BLX-0.0 has difficulties on f-incline and f-cliff, but does quite well on

f-V where the optimum lies in the center.

☞ The good performance of BLX- 0.5 on these problems indicates that extending the interval outside the

extrema determined by the parents overcomes a major shortcoming of BLX-0.0.

➢ Finally, the poor performance of 2X (for both a traditional GA and CHC)

☞ Main failure mode for 2X on these functions is premature convergence—and in the case of

the latter three functions, premature convergence on the lower order bits.
19/33

4. Empirical comparisons

• Performance tests
✓ Function summary

20/33

4. Empirical comparisons

• Performance tests

➢ ran CHC using BLX-0.5 and HUX on the 13 functions

✓ Test condition

➢ halting each run when either the optimum was found or 50,000 evaluations
had been completed

➢ Since f4 is noisy, it was required to be only "close" (two standard deviations)
to the minimum.)

➢ Unlike the failure mode tests, restarts were enabled for these runs.

➢ Test run of 50 replications

21/33

4. Empirical comparisons

• Performance tests

➢ BLX-0.5 did significantly better than HUX for f1, f2,
f4, f13, and f14,

➢ whereas HUX did significantly better for functions
f3, f5, f6, f11 and f12.

➢ For the remaining three functions there is no
significant difference.

❖ The five problems for which BLX-0.5 is the winner are the kind of functions

that one might expect BLX-0.5 to do well on.

☞ They are all smooth, continuous functions.

▪ f1 and f4 are continuous and monotonic(in Euclidean space) with independent parameters

▪ f2 is continuous and monotonic, but the discretization produces local minima in the
region near the optimum.

▪ f14 is also monotonic(bit-climber can do quite well) and f13 seems to have many local minima
(tried a variety of hillclimbers on fl3, but none of them did very well)

22/33

4. Empirical comparisons

• Performance tests

❖ The five cases for which BLX-0.5s poor performance

▪ f11 and f12 is no continuous variables with the sort of gradualness

☞ f11 consists of a 20 independent 5-bit genes, each of which is a needle on a plateau lying at one extrema

☞ fl2 consists of 20 independent 5-bit genes, each of which is deceptive.

▪ F3 also contains plateaus like f11

☞ Each of its 5 independent 10-bit genes has more structure than those of f11 , but next to the

optimum value there is a small plateau

▪ f5 consists of evenly spaced wells with sloped floors sunk in a plateau. Thus, the
optimum value and the 24 sub-optima are up against cliffs

▪ f6 is harder to explain the BLX-0.5's poor performance!!!

☞ It is a noiseless, continuous function without any plateaus or cliffs

On examination,

it turns out that f6 illustrates not a defect in BLX-0.5

so much as a fortuitous advantage presented to HUX by the representation chosen.

23/33

4. Empirical comparisons

• Performance tests

❖ Examine f6 in more detail.

▪ Figure 3-a shows a 2D cross section through the origin of f6

☞ f6 is cylindrically symmetric about the z axis

☞ The point in the center is the global optimum, and the concentric circles marked with dashed

lines are the regions of the second, third, and fourth best local optima

▪ Figure 3-b shows a small region of f6 around the origin as seen from "above".

24/33

4. Empirical comparisons

• Performance tests

❖ Examine f6 in more detail.

☞ Figure 3-c plots the points generated and evaluated during a single run of CHC using HUX

☞ Figure 3-d plots the subset of points generated that are accepted into the parent population

by replacing the worst members.

☞ Figures 3-e and 3-f show corresponding plots for BLX-0.5.

▪ Figures 3-c and 3-e dramatically illustrates the difference in how schemata are sampled

via a SPGA and an IPGA—patterns vs intervals.

☞ see the outline of a grid-like structure filling much of Figure 3-c but not 3-e

25/33

4. Empirical comparisons

• Performance tests

❖ Examine f6 in more detail.

▪ Both algorithms tend to get trapped in the best sub-optimal region indicated
by the inner, dashed circle in Figure 3-b.

▪ Both algorithms tend to favor points in this inner circle that intersect the x and y axes,
although this tendency seems to be much stronger with HUX

▪ Given that good points tend to cluster in these areas, all crossover needs to do to put
a point in the central region

☞ [for example] the global optimum resides, is to recombine a point in the (0, 3) with

a point in the (3, 0) region

➢ This would be easy to do with parameter-bounded crossover, but it turns out
that in this case it isn't that hard with uniform crossover (HUX) either.

✓ the function was fortuitously discretized so that the spacing between the
concentric circles is nearly a power of 2.

reason

* The circle marking the best sub-optima crosses the axes 65820 units from the center

which is very close to 216 = 65536.
26/33

4. Empirical comparisons

• Performance tests

❖ Examine f6 in more detail.

✓ the function was fortuitously discretized so that the spacing between the
concentric circles is nearly a power of 2.
* The circle marking the best sub-optima crosses the axes 65820 units from the center

which is very close to 216 = 65536.

▪ However, Some of the neighboring points in this sub-optimal region will differ from
the optimum by only one bit

▪ Gray coded values that are powers of two apart differ by only two bits

▪ Gray coded values of the points where the inner sub-optimum circle crosses
either of the axes will differ by only two higher order bits from the optimum point
in the center.

➢ by shifting both the axes by an amount that is not a multiple (or a near multiple) of
the distance between concentric circles, e.g., 214, the points in the best sub-
optimal region will always differ from the optimum by at least two bits.

27/33

4. Empirical comparisons

• Performance tests

❖ Examine f6 in more detail.

➢ by shifting both the axes by an amount that is not a multiple (or a near multiple) of
the distance between concentric circles, e.g., 214, the points in the best sub-
optimal region will always differ from the optimum by at least two bits.

▪ This makes the problem somewhat harder for HUX

☞ The grid-like pattern generated by HUX for the shifted problem is similar to that shown in

figure 3-c except the spacing between "lines" is half as much as before (see Figure 4).

28/33

5. Crossover versus mutation

5. Crossover versus mutation

✓ BLX-0.5, like all true crossover operators, but unlike mutation operators,
including ones that are dynamically adjusted, implicitly exploits higher
order correlations.

✓ Crossover implicitly takes into account the interaction among the genes
when generating new instances.

✓ Genes are not adjusted simply on the basis of the aggregate value of
other instances of the same gene.

✓ Unlike the typical mutation operator used with a real-coded GA, BLX-0.5's
"stepsize“ is self-adjusting, and is a function of the extent to which the
population is converged.
☞ If it is a mutation operator, it is a very special mutation operator that shares with crossover

the property of increasingly focusing search.

30/33

6. Conclusion

6. Conclusion

▪ IPGAs exploit local continuities, whereas SPGAs exploit discrete similarities

▪ With the new tool of interval-schemata, the reasons behind the empirical
successes reported for real-valued GAs can now be better understood

▪ Both IPGAs and SPGAs have the property of implicit parallelism

▪ They differ in their biases

32/33

Thanks

	슬라이드 1: Real-Coded Genetic Algorithms and Interval-Schemata
	슬라이드 2: Contents
	슬라이드 3
	슬라이드 4: 1.Introduction
	슬라이드 5
	슬라이드 6: 2. Interval-schemata and crossover
	슬라이드 7: 2. Interval-schemata and crossover
	슬라이드 8: 2. Interval-schemata and crossover
	슬라이드 9
	슬라이드 10: 3. Failure modes of an IPGA
	슬라이드 11: 3. Failure modes of an IPGA
	슬라이드 12: 3. Failure modes of an IPGA
	슬라이드 13: 3. Failure modes of an IPGA
	슬라이드 14: 3. Failure modes of an IPGA
	슬라이드 15: 3. Failure modes of an IPGA
	슬라이드 16
	슬라이드 17: 4. Empirical comparisons
	슬라이드 18: 4. Empirical comparisons
	슬라이드 19: 4. Empirical comparisons
	슬라이드 20: 4. Empirical comparisons
	슬라이드 21: 4. Empirical comparisons
	슬라이드 22: 4. Empirical comparisons
	슬라이드 23: 4. Empirical comparisons
	슬라이드 24: 4. Empirical comparisons
	슬라이드 25: 4. Empirical comparisons
	슬라이드 26: 4. Empirical comparisons
	슬라이드 27: 4. Empirical comparisons
	슬라이드 28: 4. Empirical comparisons
	슬라이드 29
	슬라이드 30: 5. Crossover versus mutation
	슬라이드 31
	슬라이드 32: 6. Conclusion
	슬라이드 33

